CONNECTED Conference 2023 - Aufzeichnungen jetzt hier verfügbar +++                     

Suche

über alle News und Events

 

Alle News

 

Am 01. Oktober ab 12:30 Uhr treffen sich...

Weiterlesen

Einfach großartig! Die Stimmung war hervorragend....

Weiterlesen

Rules, Rules, RULES!! Dan Toomey, The evolution of...

Weiterlesen

Keynote von Slava Koltovich, Feature: E2E - AIS...

Weiterlesen

Inspirierende Messeerfahrungen auf der 'Zukunft...

Weiterlesen

In diesem Artikel wird beschrieben, wie ihr eure...

Weiterlesen

Messaging mit dem Service Bus ermöglicht die...

Weiterlesen

Sebastian Meyer, Microsoft & SAP...

Weiterlesen

Für Entwickler, Architekten, Projektleiter und...

Weiterlesen

In der Welt der Softwareentwicklung ist die...

Weiterlesen

How-to: Wie AutoML hilft, Machine Learning effektiv im Berufsalltag einzusetzen

Auf dem techcamp Hamburg im Klubhaus St. Pauli präsentiert Ruben Aster, wie wir für unseren Kunden eine Azure Machine Learning Lösung entwickelt haben, die automatisiert die richtigen Antworten auf die tägliche Flut an Email-Anfragen generiert.

Für einen Kunden haben wir folgendes Szenario implementiert: Die Support-Abteilung eines Kunden muss jeden Tag eine Vielzahl von Emails beantworten und benötigt deswegen Unterstützung. Diese haben wir in Form eines Outlook Add-Ins implementiert, welches die aktuelle Email an unseren Webservice schickt, welcher durch Named-Entity Recognition verschiedenste Entitäten innerhalb der Email erkennt (Customer Reference, Produktnamen usw.) und anhand von Natural Language Processing den Inhalt der Email interpretiert und einen Fundus von sinnvollen, vordefinierten Antworten vorschlägt. Diese werden in Outlook angezeigt und können einfach als Antwort versendet werden. Der Webservice kann zudem mit dem CRM System des Kunden kommunizieren und dadurch den aktuellen Status von Bestellungen, Lagerbestand usw. in die möglichen Antworten einbeziehen.

Zum Trainieren des Machine Learning Models haben wir Azure AutoML verwendet, welches durch automatisches Experimentieren mit Klassifizierungen und Pipeline Parametern den besten Algorithmus und die besten Hyper Parameter findet. Somit braucht man weniger tiefes Fachwissen bzgl. Data Science und kann sich als Entwickler eher auf die Architektur des Systems und dessen Features konzentrieren.

Mehr dazu unter: https://www.linkedin.com/pulse/wie-automl-hilft-machine-learning-effektiv-im-ruben-aster/

Zur Person: Ruben hat seine Wurzeln in der Spieleentwicklung und entwickelte elf Jahre in der Industrie Spiele sowohl für PC, Web und Konsolen, als auch für mobile Geräte wie Tablets und Handys. Um seinen Horizont zu erweitern und komplett die IT-Branche zu wechseln, hat Ruben vor etwa einem Jahr bei QUIBIQ Hamburg angefangen und entwickelt seit dem verschiedenste Integrationslösungen für Kunden auf Basis von Microsoft Produkten. Sein Fokus innerhalb von QUIBIQ liegt dabei auf den Bereichen Data Science und Machine Learning.

Ihre Kontaktmöglichkeiten

Sie haben eine konkrete Frage an uns


 

Bleiben Sie immer auf dem Laufenden


 

Mit meinem "Ja" erkläre ich mich mit der Verarbeitung meiner Daten zur Zusendung von Informationen einverstanden. Ich weiß, dass ich diese Erklärung jederzeit durch einfache Mitteilung widerrufen kann. Bei einem Nein an dieser Stelle erhalte ich zukünftig keine Informationen mehr.

© QUIBIQ GmbH · Impressum · Datenschutz